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Abstract. We consider the stochastic optimization of finite sums where the functions are smooth and
convex on a Riemannian manifold. We present MASAGA, an extension of SAGA on Riemannian mani-
folds. SAGA is a variance reduction technique that often performs faster in practice compared to methods
that rely on updating the expensive full gradient frequently such as SVRG. However, SAGA typically
requires extra memory proportional to the size of the dataset to store stale gradients. This memory foot-
print can be reduced when the gradient vectors have a structure such as sparsity. We show that MASAGA
achieves a linear convergence rate when the objective function is smooth, convex, and lies on a Rieman-
nian manifold. Furthermore, we show that MASAGA achieves faster convergence rate with non-uniform
sampling than the uniform sampling. Our experiments show that MASAGA is faster than the RSGD
algorithm for finding the leading eigenvector corresponding to the maximum eigenvalue.

Keywords: Variance Reduced Stochastic Optimization· Riemannian Manifold.

1 Introduction

The most common supervised learning methods in machine learning use empirical risk minimization dur-
ing the training. The minimization problem can be expressed as minimizing a finite sum of loss functions
evaluated at a single data sample. We consider the problem of minimizing a finite sum over a Riemannian
manifold:

min
x∈X⊂M

f(x) =
1

n

n∑
i=1

fi(x),

where X is a geodesically convex set in the Riemannian manifold M. Each function fi is geodesically
Lipschitz smooth and the sum is geodesically strongly convex over the set X . Learning of several machine
learning models can be written as an optimization over a Riemannian manifold. Principal component analy-
sis (PCA) [38], dictionary learning [32], Gaussian mixture model (GMM) [10], covariance estimation [35],
and computing the Riemannian centroid [11] are a few of such models.

WhenM = Rd, the problem reduces to convex optimization in Euclidean space. An extensive body of
literature studies this problem in deterministic and stochastic settings [5,28,21,27,22]. It is possible to convert
the optimization over a manifold into an optimization in Euclidean space by adding x ∈ X as an optimization
constraint. The problem could be treated as an optimization in Euclidean space with an extra projection step.
However, the problem with this approach is that we are not explicitly exploiting the geometrical structure
of the manifold. Furthermore, the projection step for manifolds such as positive-definite matrices could be
quite expensive. Finally, a function could be non-convex in Euclidean space, but geodesically convex over
an appropriate manifold. With geodesic convexity, an optimization over the manifold could converge as fast
as convex optimization in Euclidean space.

Stochastic optimization over manifolds and their convergence properties have received significant inter-
est in the recent literature [4,37,14,29,36]. Bonnabel [4] and Zhang et al. [37] analyze the application of
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SGD for optimization over manifolds. Similar to Euclidean space optimization with SGD, these methods
suffer from the aggregating variance problem [39]. Therefore, the analysis of these methods gets a sublinear
convergence rate similar to vanilla SGD. Variance reduction techniques have been introduced to diminish
the variance in SGD analysis of finite sums over linear spaces. The variance reduction techniques can be cat-
egorized into two groups: (i) memory based approaches such as SAG [16], SAGA [6], and SDCA [31], and
(ii) full gradient based approaches such as SVRG [12] and its variants [19,15,24]. Memory based methods
use the memory to store a stale gradient of each fi. Roughly, during each iteration, they pick a random fi
and evaluate its gradient and update the corresponding memory slot with the new value. Then, they use the
average of stored values as an approximate gradient of f . In contrast, full gradient based methods only store
the gradient of f , and not the individual fi’s. These methods occasionally evaluate and update the gradient
of f and use it to approximate the full gradient during each iteration.

Several methods [14,29,36] use SVRG to optimize the finite sum problem over a Riemannian manifold.
Similar to the linear space analysis, these methods converge linearly for geodesically Lipschitz smooth
and strongly convex functions. However, these methods require an extra full gradient evaluation just like
the original SVRG. Although SVRG often dramatically outperforms the classical gradient descent (GD)
and SGD, the extra gradient evaluation typically yields a slower convergence than memory based methods.
Furthermore, the extra gradient calculations of SVRG makes it even slower than the classical SGD during
the early iterations where SGD has the most advantage [9]. When the bottleneck of the process is the gradient
computation itself, using memory based methods is more advantageous [7,3].

We present MASAGA, a SAGA [6] based algorithm to optimize finite sums over Riemannian manifolds.
MASAGA needs memory in the order of the dataset size to approximate the full gradient. This memory re-
quirement could be alleviated when the gradient of each fi admits a special structure such as sparsity [30,34].
We analyze MASAGA and present a proof of linear convergence for geodesically strongly convex func-
tions similar to the SVRG based counterparts [14,29,36]. We also show in theory that both MASAGA and
RSVRG [36] with a non-uniform sampling strategy can converge faster than the uniform sampling scheme.
Finally, we consider the problem of finding the leading eigenvector that minimizes a quadratic function over a
sphere. We show that MASAGA converges linearly with uniform and non-uniform sampling schemes on this
problem. For evaluation, we consider one synthetic and two real datasets. The real datasets are MNIST [17]
and Ocean data [18]. We find the leading eigenvector of each class and visualize the results. On MNIST,
the leading eigenvectors resemble the images of each digit class, whereas, for the Ocean dataset, we observe
that the leading eigenvector represents the background image in the dataset.

In section 2, we present an overview of the essential concepts in Riemannian geometry. We define the
geodesically convex and smooth function classes based on Zhang et al. [37]. We also briefly review the
original SAGA algorithm. In section 3, we introduce MASAGA algorithm and analyze its convergence. We
show that with a non-uniform sampling scheme MASAGA converges faster than uniform sampling. Finally,
in section 4, we empirically verify the theoretical linear convergence results.

2 Preliminaries

In this section, we first review concepts related to the Riemannian manifold. Then, we introduce the class of
functions that we optimize over the manifold. Finally, we briefly review the original SAGA algorithm.

2.1 Riemannian Manifold
In this section, we review the basic and fundamental concepts of Riemannian manifold and geometry. For a
more detailed review we refer the interested reader to the literature [26,1,33]. Throughout the paper, we use
manifold and Riemannian manifold exchangeably.
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A Riemannian manifold denoted by (M, G) is a smooth manifold over Rd, and G is its metric. At any
point x in the manifoldM, we define TM(x) to be the tangent plane of that point, and G defines an inner
product in this plane. Formally let p and q be two vectors in TM(x), then 〈p, q〉x = G(p, q). Similar to
Euclidean space, using G we can define the norm of a vector and the angle between two vectors.

To measure the distance between two points on the manifold, we use the geodesic distance. Geodesics
on the manifold generalize the concept of straight lines in Euclidean space. Let us denote the geodesic with
γ(t) : [0, 1]→M, that is a function with constant gradient i.e.,

d2

dt2
γ(t) = 0.

To map a point in TM(x) toM, we use the Exponential function Expx : TM(x) → M. If Expx(p) = z,
meaning that there is a geodesic curve γzx(t) on the manifold such that it starts from x i.e., γzx(0) = x and
ends at z i.e., γzx(1) = z and its velocity is p i.e., d

dtγ
z
x(0) = p.

Expx(p) = γzx(1).

When the Exp function is defined for every point in the manifold, we call the manifold geodesically com-
plete. For example, the unit sphere in Rn is geodesically complete. If there is a unique geodesic curve
between any two points inM′ ∈ M, then the Expx function has an inverse defined by the Log function.
Formally Logx ≡ Exp−1

x : M′ → TM(x) and maps a point from M′ back into the tangent plane at x.
Moreover, the geodesic distance between x and z is the length of the unique shortest path between z and x
and is equal to ‖Logx(z)‖ = ‖Logz(x)‖.

Let u, v ∈ TM(x) be linearly independent so they specify a two dimensional subspace Sx ∈ TM(x). The
exponential map of this subspace Expx(Sx) = SM is a two dimensional submanifold inM. The sectional
curvature of SM denoted by K(SM, x) is defined as a Gauss curvature of SM at x [40]. This sectional
curvature helps us in the convergence analysis of the optimization method. The following lemma gives a
trigonometric distance bound the and is essential for our analysis.

Lemma 1. (Lemma 5 in [37]) Let a, b, and c be the side lengths of a geodesic triangle in a manifold with
sectional curvature lower bounded by Kmin. Then

a2 ≤
c
√
|Kmin|

tanh(
√
|Kmin|c)

b2 + c2 − 2bc cos(](b, c))

Another important map used in our algorithm is the parallel transport. It transfers a vector from a tangent
plane to another tangent plane along a geodesic. This map denoted by Γ zx : TM(x)→ TM(z), maps a vector
from the tangent plane TM(x) to a vector in the tangent plane TM(z) while preserving the norm and inner
product values.

〈p, q〉x = 〈Γ zx (p), Γ zx (q)〉z

Grassmann manifold. Here we review the Grassmann manifold Grass(p, n) as a practical Riemannian
manifold used in machine learning. Let p and n be positive integers and p ≤ n. Grass(p, n) contains all
orthogonal matrices in Rn×p, with orthonormal columns. Therefore if M ∈ Grass(p, n) then we have
M>M = I , where I ∈ Rp×p is the identity matrix. Let q ∈ TGrass(p,n)(x), and q = UΣV > be its p-rank
singular value decomposition. Then we have:

Expx(tq) = xV cos(tΣ)V > + U sin(tΣ)V >.
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The parallel transport along a geodesic curve γ(t) such that γ(0) = x and γ(1) = z is defined as:

Γ zx (tq) = (−xV sin(tΣ)U> + U cos(tΣ)U> + I − UU>)q.

2.2 Smoothness and Convexity on Manifold

In this section, we define convexity and smoothness of a function over a manifold following Zhang et al. [37].
We call X ∈M geodesically convex if for any two points y, z ∈ X , there is a geodesic γ(t) starting from y
and ending in z with a curve inside of X . For simplicity, we drop the subscript of inner product notation.

A function f : X → R is called geodesically convex if for any y, z ∈ X and the corresponding
geodesic γ, for any t ∈ [0, 1] we have:

f(γ(t)) ≤ (1− t)f(y) + tf(z).

Similar to the Euclidean space, if the Log function is well defined we have the following definition for
convex function:

f(z) + 〈gz,Logz(y)〉 ≤ f(y),

where gz is the subgradient of f at x. If f is a differentiable function, the Riemannian gradient of f at
z is a vector gz which satisfies d

dt |t=0f(Expz(tgz)) = 〈gz,∇f(z)〉z , and ∇f is the gradient of f in Rn.
Furthermore, f is geodesically µ-strongly convex, if there is a µ such that:

f(z) + 〈gz,Logz(y)〉+
µ

2
‖Logz(y)‖2 ≤ f(y).

Let x∗ ∈ X be the optimum of f i.e., gx∗ = 0, then the following inequalities would hold

‖Logz(x
∗)‖2 ≤ 2

µ
(f(z)− f(x∗))

〈gz,Logz(x
∗)〉+

µ

2
‖Logz(x

∗)‖2 ≤ 0

Finally, f is a geodesically Lipschitz smooth function with the parameter L, if it is differentiable over
M and its gradient satisfies the following inequality:

‖gz − Γ zy [gy] ‖ ≤ L‖Logz(y)‖ = L d(z, y),

where d(z, y) is the distance between z and y. Also, for a geodesically smooth f the following inequality
holds:

f(y) ≤ f(z) + 〈gz,Logz(y)〉+
L

2
‖Logz(y)‖2.

2.3 SAGA Algorithm

In this section we briefly review the SAGA method [6] and the assumptions associated with it. SAGA
assumes f is µ-strongly convex, each fi is convex, and each gradient f ′i is Lipschitz-continuous with the
constant L. The method generates a sequence of iterates xt using the SAGA Algorithm 1 (line 7). In the al-
gorithm, M is the memory used to store stale gradients. During each iteration, SAGA picks one fi randomly
and evaluates its gradient at the current iterate value i.e.,∇fi(xt). Next, it computes νt as the difference be-
tween the current ∇fi(xt) and the corresponding stale gradient of fi stored in the memory plus the average
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Algorithm 1 The Original SAGA Algorithm
1: Input: Learning rate η
2: Initialize x0 = 0 and memory M (0) with gradient of x0
3: for t = 1, 2, 3, . . . do
4: µ̂ = 1

n

∑n
j=1M

t[j]
5: Pick i uniformly at random from {1 . . . n}
6: νt = ∇fi(xt)−M t[i] + 1

n

∑n
j=1M

t[j]
7: xt+1 = xt − η(νt)
8: Set M t+1[i] = ∇fi(xt) and M t+1[j] =M t[j] for all j 6= i
9: end for

of all stale gradients (line 6). Then it uses this vector νt as an approximation of the full gradient and updates
the current iterate similar to the gradient descent update rule. Finally, SAGA updates the stored gradient of
fi in the memory with the new value of∇fi(xt).

Let ρsaga = µ
2(nµ+L) . Defazio et al. [6] show that the iterate value xt converges to the optimum x∗

linearly with a contraction rate 1− ρsaga, i.e.,

E
[
‖xt − x∗‖2

]
≤ (1− ρsaga)tC,

where C is a positive constant.

3 Optimization on Manifold with SAGA

In this section we introduce the MASAGA algorithm (see Alg. 2). We make the following assumptions:

1. each fi is geodesically L-Lipschitz continuous.
2. f is geodesically µ-strongly convex
3. f has an optimum in X i.e., x∗ ∈ X
4. The diameter of X is bounded above, i.e., maxu,v∈X d(u, v) ≤ D
5. Logx is defined when x ∈ X
6. The sectional curvature of X is bounded, i.e., Kmin ≤ KX ≤ Kmax.

These assumptions also commonly appear in the previous work [37,14,29,36]. Similar to the previous
work [37,14,36] we also define the following constant which is essential in our analysis:

ζ =


√
|Kmin|D

tanh(
√
|Kmin|D)

if Kmin < 0

1 if Kmin ≥ 0

In MASAGA we modify two parts of the original SAGA: (i) since gradients are in different tangent
spaces, we use parallel transport to map them into the same tangent plane and then do the variance reduction
step (line 6 Alg. 2), and (ii) we use the Exp function to map the update step back into the manifold (line 7
Alg. 2).
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Algorithm 2 MASAGA Algorithm
1: Input: Learning rate η and x0 ∈M
2: Initialize memory M (0) with gradient of x0
3: for t = 1, 2, 3, . . . do
4: µ̂ = 1

n

∑n
j=1M

t[j]
5: Pick i uniformly at random from {1 . . . n}
6: νt = ∇fi(xt)− Γ xt

x0

[
M t[i]− µ̂

]
7: xt+1 = Expxt

(−η(νt))
8: Set M t+1[i] = Γ x0

xt [∇fi(xt)] and M t+1[j] =M t[j] for all j 6= i
9: end for

3.1 Convergence Analysis

In this section we analyze the convergence of MASAGA considering the above assumptions and we show
that it converges linearly. In our analysis, we use the fact that MASAGA’s estimation of the full gradient
νt is unbiased (like SAGA), i.e., E [νt] = ∇f(xt). For simplicity, we use ∇f to denote the Riemannian
gradient instead of gx. We assume that there exists an incremental first-order oracle (IFO) [2] that gets an
i ∈ {1, ..., n}, and an x ∈ X , and return (fi(x),∇fi(x)) ∈ (R× TM(x)).

Theorem 1. When each fi is geodesicallyL-smooth and f is geodesically µ-strongly convex on the manifold

M, the MASAGA algorithm with the constant step size η =
2µ+
√
µ2−8ρ(1+α)ζL2

4(1+α)ζL2 converges linearly while
satisfying the following:

E
[
d2(xt, x

∗)
]
≤ (1− ρ)tΥ 0,

where, ρ = min{ µ2

8(1+α)ζL2 ,
1
n−

1
αn},α > 1 is a constant, and Υ 0 = 2αζη2

∑n
i=1 ‖M0[i]−Γ x0

x∗ [∇fi(x∗)] ‖2+

d2(x0, x
∗) are positive scalars.

Proof. Let δt = d2(xt, x
∗). First let us find an upper bound for E

[
‖νt‖2

]
:

E
[
‖νt‖2

]
= E

[
‖∇fi(xt)− Γ xtx0

[
M t[i]− µ̂

]
‖2
]

= E
[
‖∇fi(xt)− Γ xtx∗ [∇fi(x∗)]− Γ xtx0

[
M t[i]− Γ x0

x∗ [∇fi(x∗)]− µ̂
]
‖2
]

≤ 2E
[
‖∇fi(xt)− Γ xtx∗ [∇fi(x∗)] ‖2

]
+ 2E

[
‖Γ xtx0

[
M t[i]− Γ x0

x∗ [∇fi(x∗)]− µ̂
]
‖2
]

≤ 2E
[
‖∇fi(xt)− Γ xtx∗ [∇fi(x∗)] ‖2

]
+ 2E

[
‖M t[i]− Γ x0

x∗ [∇fi(x∗)] ‖2
]

≤ 2L2δt + 2E
[
‖M t[i]− Γ x0

x∗ [∇fi(x∗)] ‖2
]

The first inequality is due to (a+ b)2 ≤ 2a2 + 2b2 and the second one is from the variance upper bound, i.e.,
E
[
x2 − E [x]

2
]
≤ E

[
x2
]
. The last inequality comes from the geodesic Lipschitz smoothness of each fi.

E [δt+1] ≤ E
[
δt − 2

〈
νt,Exp−1

xt (−x∗)
〉

+ ζη2‖νt‖2
]

= δt − 2η
〈
∇f(xt),Exp−1

xt (−x∗)
〉

+ ζη2E
[
‖νt‖2

]
≤ δt − ηµδt + ζη2E

[
‖νt‖2

]
≤ (1− µη)δt + ζη2

[
2L2δt + 2E

[
‖M t[i]− Γ x0

x∗ [∇fi(x∗)] ‖2
]]

= (1− µη + 2ζL2η2)δt + 2ζη2Ψt
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where the first inequality is due to the trigonometric distance bound, the second one is due to the strong
convexity of f , and the last one is due to the upper bound for νt. Let

Ψt =
1

n

n∑
i=1

‖M t[i]− Γ x0
x∗ [∇fi(x∗)] ‖2.

Now let us define the Lyaponov function:

Υ t = δt + c Ψt

for some c > 0. Next we have to find an upper bound for E [Ψt+1].

E [Ψt+1] =
1

n
(

1

n

n∑
i=1

‖∇fi(xt)− Γ xtx∗ [∇fi(x∗)] ‖2) + (1− 1

n
)(

1

n

n∑
i=1

‖M t[i]− Γ x0
x∗ [∇fi(x∗)] ‖2)

=
1

n
(

1

n

n∑
i=1

‖∇fi(xt)− Γ xtx∗ [∇fi(x∗)] ‖2) + (1− 1

n
)Ψt

≤ L2

n
δt + (1− 1

n
)Ψt

where the inequality is due to the geodesic Lipschitz smoothness of fi. Then, for some positive ρ ≤ 1 we
have the following inequality:

E
[
Υ t+1

]
− (1− ρ)Υ t ≤ (1− µη + 2ζL2η2 − (1− ρ) +

cL2

n
)δt

+ (2ζη2 − c(1− ρ) + c(1− 1

n
))Ψt (1)

δt and Ψt are positive by construction, therefore, if the coefficients of δt and Ψt in the right hand side of
the equation 1 are negative, we would have E

[
Υ t+1

]
≤ (1− ρ)Υ t. More precisely, we require

2ζη2 − c(1− ρ) + c(1− 1

n
) ≤ 0 (2)

1− µη + 2ζL2η2 − (1− ρ) +
cL2

n
≤ 0 (3)

To satisfy 2, we require ρ ≤ 1
n −

2ζη2

c . If we set c = 2αnζη2 for some α > 1, then ρ ≤ 1
n −

1
αn , which

satisfies our requirement.
Now, if we replace the value for c in Inequality 3, we would get:

ρ− µη + 2ζL2η2 + 2αζL2η2 ≤ 0

η ∈ (η− =
2µ−

√
µ2 − 8ρ(1 + α)ζL2

4(1 + α)ζL2
, η+ =

2µ+
√
µ2 − 8ρ(1 + α)ζL2

4(1 + α)ζL2
)
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To ensure the term under the square root is positive, we also need ρ < µ2

8(1+α)ζL2 . Finally, if we set ρ =

min{ µ2

8(1+α)ζL2 ,
1
n −

1
αn} and η = η+, then we have:

E
[
Υ t+1

]
≤ (1− ρ)t+1Υ 0,

where Υ 0 is a scalar. Since Ψt > 0, E [δt+1] ≤ E
[
Υ t+1

]
and we get:

E [δt+1] ≤ (1− ρ)t+1Υ 0.

Corollary 1. Let β = nµ2

8ζL2 and ᾱ = β +
√

β2

4 + 1 > 1. If we set, α = ᾱ then we would have ρ =

µ2

8(1+ᾱ)ζL2 = 1
n −

1
ᾱn . Now, to reach an ε accuracy, i.e., E

[
d2(xT , x

∗)
]
< ε, we need :

T ≥ (
8(1 + ᾱ)ζL2

µ2
) log(

1

ε
), (4)

where T is the number of necessary iterations.

Note that this bound is similar to the bound of Zhang et al. [36]. To make it clear, notice that ᾱ ≤ 2β + 1.
Therefore, if we plug this upper bound to Inequality 4 we get:

T = O(
(2β + 2)ζL2

µ2
) log(

1

ε
) = O(

nµ2

8ζL2

ζL2

µ2
+
ζL2

µ2
) log(

1

ε
) = O(n+

ζL2

µ2
) log(

1

ε
).

The L2

µ2 term in the above bound is the squared condition number that could be prohibitively large in
machine learning applications. In contrast, the original SAGA and SVRG algorithms only depend on L

µ
on convex function within linear spaces. In the next section, we improve this bound through non-uniform
sampling techniques.

3.2 MASAGA with Non-uniform Sampling

Using non-uniform sampling for stochastic optimization in Euclidean spaces could help us achieve a faster
convergence rate [30,20,9]. In this section, we assume that each fi has its own geodesically Li-Lipschitz
smoothness as opposed to a single geodesic Lipschitz smoothness L = max{Li}. Now, instead of uniformly
sampling fi, we sample fi with probability Li

nL̄
, where L̄ = 1

n

∑n
i=1 Li, and usually L̄ � L. The iteration

update is then changed to:

xt+1 = Expxt(−η(
L̄

Li
νt)),

which keeps the search direction unbiased, i.e., E
[
L̄
Li
νt

]
= ∇f(xt). The following theorem shows the

convergence of the new method.

Theorem 2. When each fi is geodesically Li-smooth and f is geodesically µ-strongly convex on the man-
ifoldM, the MASAGA algorithm with the defined non-uniform sampling scheme and the constant step size

η =
2µ+

√
µ2−8ρ(L̄+αL) ζγ L̄

4(L̄+αL) ζγ L̄
converges linearly as follows:

E
[
d2(xt, x

∗)
]
≤ (1− ρ)tΥ 0,

where ρ = min{ γµ2

8(1+α)ζLL̄
, γn −

γ
αn}, γ = min{Li}

L̄
, L = max{Li}, L̄ = 1

n

∑n
i=1 Li, and α > 1 is a

constant, and Υ 0 = 2αζη2

γ

∑n
i=1

L̄
Li
‖M0[i]− Γ x0

x∗ [∇fi(x∗)] ‖2 + d2(x0, x
∗) are positive scalars.
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Proof of the above theorem could be found in the supplementary material.

Corollary 2. Let β = nµ2

8ζLL̄
and ᾱ = β +

√
β2

4 + 1 > 1. If we set, α = ᾱ then we have ρ = γµ2

8(1+ᾱ)ζLL̄
=

γ
n −

γ
ᾱn . Now, to reach an ε accuracy, i.e., E

[
d2(xT , x

∗)
]
< ε, we require:

T = O(n+
ζLL̄

γµ2
) log(

1

ε
), (5)

where T is the number of the necessary iterations.

Observe that the number of iterations T in Equality 5 depends on L̄L instead of L2. When L̄ � L, the
difference could be significant. Thus, MASAGA with non-uniform sampling could achieve an ε accuracy
faster than MASAGA with uniform sampling.

Similarly we can use the same sampling scheme for the RSVRG algorithm [36] and improve its conver-
gence. Specifically, if we change the update of Algorithm 1 of Zhang et al. [36] to xs+1

t+1 = Expxs+1
t
−η( L̄Li ν

s+1
t ),

then Theorem 1 and Corollary 1 of Zhang et al. [36] would change to the following ones.

Theorem 3. [Theorem 1 of [36] with non-uniform sampling] If we use non-uniform sampling in Algorithm
1 of RSVRG [36] and run it with the option I as described in the work, and let

α =
3ζηL̄2

µ− 2ζηL̄2
+

(1 + 4ζη2 − 2ηµ)m(µ− 5ζηL̄2)

µ− 2ζηL̄2
< 1,

where m is the number of the inner loop iterations, then through S iterations of the outer loop, we would
have:

E
[
d2(x̃S , x∗)

]
≤ (α)Sd2(x̃0, x∗)

The above theorem can be proved through a simple modification to the proof of Theorem 1 in RSVRG [36].

Corollary 3. [Corollary 1 of [36] with non-uniform sampling] With non-uniform sampling in Algorithm 1
of RSVRG, after O(n+ ζL̄2

γµ2 ) log( 1
ε ) IFO calls, the output xa satisfies

E [f(xa)− f(x∗)] ≤ ε

Note that through the non-uniform sampling we improved the RSVRG [36] convergence by replacing
the L2 term with a smaller L̄2 term.

4 Experiments: Computing the leading eigenvector

Computing the leading eigenvector is important in many real-world applications. It is widely used in social
networks, computer networks, and metabolic networks for community detection and characterization [23].
It can be used to extract a feature that “best” represent the dataset [8] to aid in tasks such as classification,
regression, and background subtraction. Furthermore, it can be used in page rank algorithms which require
computing the principal eigenvector of the matrix describing the hyperlinks in the web [13]. These datasets
can be huge (the web has more than three billion pages [13]). Therefore, speeding up the leading eigenvector
computation will have a significant impact on many applications.
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We evaluate the convergence of MASAGA by testing it on several datasets through computing the lead-
ing eigenvector. The problem can is written as follows:

min
x>x=1

f(x) = − 1

n
x>(

n∑
i=1

ziz
>
i )x, (6)

which is a non-convex objective in the Euclidean space Rd, but a convex objective in the Riemannian man-
ifold. Therefore, MASAGA can achieve a linear convergence rate on this problem. We apply our algorithm
on the following datasets:

– Synthetic. We generate Z as a 1000 × 100 matrix where each entry is sampled uniformly from (0, 1).
To diversify the Lipschitz constants of the individual zi’s, we multiply each zi with an integer obtained
uniformly between 1 and 100.

– MNIST [17]. We randomly pick 10000 examples corresponding to digits 0-9 resulting in a matrix
Z ∈ R10,000×784.

– Ocean. We use the ocean video sequence data found in the UCSD background subtraction dataset [18].
It consists of 176 frames, each resized to a 94× 58 image.

We compare MASAGA against RSGD [36] and RSVRG [4]. For solving geodesically smooth convex
functions on the Riemannian manifold, RSGD and RSVRG achieve sub-linear and linear convergence rates
respectively. Since the manifold for Eq. 6 is that of a sphere, we have the following functions:

PX(H) = H − trace(X>H)X, ∇rf(X) = PX(∇f(X)),

ExpX(U) = cos(||U ||)X +
sin(||U ||)
||U ||

U, Γ xy (U) = Py(U),
(7)

where P corresponds to the tangent space projection function, ∇rf the Riemannian gradient function, Exp
the exponential map function, and Γ the transport function. We evaluate the progress of our algorithms at
each epoch t by computing the relative error between the objective value and the optimum, i.e., f(xt)−f∗

|f∗| .
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Fig. 1: Comparison of MASAGA (ours), RSVRG, and RSGD for computing the leading eigenvector. The
suffix (U) represents uniform sampling and (NU) the non-uniform sampling.

Figure 1 shows that MASAGA is consistently faster than RSGD and RSVRG in the first few epochs. For
each algorithm, we perform a grid-search over the learning rates {10−1, 10−2, ..., 10−9} and plot the results
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Fig. 2: The obtained leading eigenvectors of all MNIST digits.

of the algorithm with the best performance. While it is expected that MASAGA beats RSGD since it has a
better convergence rate, the reason MASAGA can outperform RSVRG is that RSVRG needs to occasionally
re-compute the full gradient. Furthermore, at each iteration, MASAGA requires a single gradient evaluation
instead of two evaluations required by RSVRG. We see in Figure 1 that non-uniform (NU) sampling often
leads to faster progress than uniform (U) sampling, which is consistent with the theoretical analysis. In the
NU sampling case we sample a vector zi based on its Lipschitz constant Li = ||zi||2. Note that for problems
where Li is not known or costly to compute, we can estimate it by using Algorithm 2 in [30].

Fig. 3: The obtained leading eigenvectors of the MNIST digits 1-6.

Figures 2 and 3 show the leading eigenvectors obtained for the MNIST dataset. We run MASAGA on
10, 000 images of the MNIST dataset and plot its solution in Figure 2. We see that the exact solution is
similar to the solution obtained by MASAGA, which represent the most common strokes among the MNIST
digits. Furthermore, we ran MASAGA on 500 images for digits 1-6 independently and plot its solution for
each class in Figure 3. Since most digits of the same class have similar shapes and are fairly centered, it is
expected that the leading eigenvector would be similar to one of the digits in the dataset.

Figure 4 shows qualitative results comparing MASAGA, RSVRG, and RSGD. We run each algorithm for
20 iterations and plot the results. MASAGA’s and RSVRG’s results are visually similar to the exact solution.
However, the RSGD result is visually different than the exact solution (the difference is in the center-left of
the two images).
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Fig. 4: The obtained leading eigenvectors of the ocean dataset after 20 iterations.

5 Conclusion

We introduced MASAGA which is a stochastic variance reduced optimization algorithm for Riemannian
manifolds. We analyzed the algorithm and showed that it converges linearly when the objective function
is geodesically Lipschitz smooth and strongly convex. We also showed that using non-uniform sampling
improves the convergence speed of MASAGA and RSVRG algorithms. Finally, we evaluated our method on
a synthetic dataset and two real datasets where we empirically observed linear convergence. The empirical
results show that MASAGA outperforms RSGD and is faster than RSVRG in the early iterations. For future
work, we plan to extend MASAGA by deriving convergence rates for the non-convex case of geodesic
objective functions. We also plan to explore accelerated variance reduction methods and block coordinate
descent based methods [25] for Riemannian optimization. Another potential future work of interest is a study
of relationships between the condition number of a function within the Euclidean space and its corresponding
condition number within a Riemannian manifold, and the effects of sectional curvature on it.

References

1. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization algorithms on matrix manifolds. Princeton University Press
(2009)

2. Agarwal, A., Bottou, L.: A lower bound for the optimization of finite sums. arXiv preprint (2014)
3. Bietti, A., Mairal, J.: Stochastic optimization with variance reduction for infinite datasets with finite sum structure.

In: Advances in Neural Information Processing Systems. pp. 1622–1632 (2017)
4. Bonnabel, S.: Stochastic gradient descent on riemannian manifolds. IEEE Transactions on Automatic Control 58(9),

2217–2229 (2013)
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6 Appendix

6.1 Proof of Theorem 2

Proof. Let δt = d2(xt, x
∗). First let us find an upper bound for E

[
‖ L̄Li νt‖

2
]
:

E
[
‖ L̄
Li
νt‖2

]
= E

[
(
L̄

Li
)2‖∇fi(xt)− Γ xtx0

[
M t[i]− µ̂

]
‖2
]

= E
[
(
L̄

Li
)2‖∇fi(xt)− Γ xtx∗ [∇fi(x∗)]− Γ xtx0

[
M t[i]− Γ x0

x∗ [∇fi(x∗)]− µ̂
]
‖2
]

≤ 2E
[
(
L̄

Li
)2‖∇fi(xt)− Γ xtx∗ [∇fi(x∗)] ‖2

]
+ 2E

[
‖( L̄
Li

)(Γ xtx0

[
M t[i]− Γ x0

x∗ [∇fi(x∗)]− µ̂
]
)‖2
]

≤ 2E
[
(
L̄

Li
)2‖∇fi(xt)− Γ xtx∗ [∇fi(x∗)] ‖2

]
+ 2E

[
(
L̄

Li
)2‖M t[i]− Γ x0

x∗ [∇fi(x∗)] ‖2
]

≤ 2E
[
(
L̄

Li
)2L2

i δt

]
+ 2E

[
(
L̄

Li
)2‖M t[i]− Γ x0

x∗ [∇fi(x∗)] ‖2
]

= 2L̄2δt + 2E
[
(
L̄

Li
)2‖M t[i]− Γ x0

x∗ [∇fi(x∗)] ‖2
]

= 2L̄2δt + 2
1

n

n∑
i=1

(
L̄

Li
)‖M t[i]− Γ x0

x∗ [∇fi(x∗)] ‖2

The first inequality is due to (a + b)2 ≤ 2a2 + 2b2 and the second one is from the variance upper bound,
i.e., E

[
x2 − E [x]

2
]
≤ E

[
x2
]
. The last inequality comes from the Lipschitz smoothness of each fi. The

last equality is due to fact that we sample each fi with probability Li
nL̄i

.
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E [δt+1] ≤ E
[
δt − 2

〈
L̄

Li
νt,Exp−1

xt (−x∗)
〉

+ ζη2‖ L̄
Li
νt‖2

]
= δt − 2η

〈
∇f(xt),Exp−1

xt (−x∗)
〉

+ ζη2E
[
‖ L̄
Li
νt‖2

]
≤ δt − ηµδt + ζη2E

[
‖ L̄
Li
νt‖2

]
≤ (1− µη)δt + ζη2

[
2L̄2δt + 2

1

n

n∑
i=1

(
L̄

Li
)‖M t[i]− Γ x0

x∗ [∇fi(x∗)] ‖2
]

= (1− µη + 2ζL̄2η2)δt + 2ζη2Ψt

where the first inequality is due to the trigonometric distance bound, the second one is due to strong convexity
of f , and the last one is due to upper bound for νt. Let

Ψt =
1

n

n∑
i=1

(
L̄

Li
)‖M t[i]− Γ x0

x∗ [∇fi(x∗)] ‖2.

Now let us define the Lyaponov function:

Υ t = δt + c Ψt

for some c > 0. Next we have to find an upper bound for E [Ψt+1].

E [Ψt+1] =
1

n
(

n∑
i=1

Li
nL̄i

(
L̄

Li
)‖∇fi(xt)− Γ xtx∗ [∇fi(x∗)] ‖2) + (

1

n

n∑
i=1

(1− Li
nL̄i

)‖M t[i]− Γ x0
x∗ [∇fi(x∗)] ‖2)

=
1

n
(

1

n

n∑
i=1

‖∇fi(xt)− Γ xtx∗ [∇fi(x∗)] ‖2) + (1− γ

n
)Ψt

≤ 1

n
(

1

n

n∑
i=1

L2
i δt) + (1− γ

n
)Ψt

≤ LL̄

n
δt + (1− γ

n
)Ψt

where γ = min{Li}
L̄

.The first inequality is due to geodesic Lipschitz smoothness of fi. Then for some
positive ρ ≤ 1 we have the following inequality:

E
[
Υ t+1

]
− (1− ρ)Υ t ≤ (1− µη + 2ζL̄2η2 − (1− ρ) +

cLL̄

n
)δt

+ (2ζη2 − c(1− ρ) + c(1− γ

n
))Ψt (8)

So if the coefficients of δt and Ψt in the right hand side of the equation 8 are negative, we have
E
[
Υ t+1

]
≤ (1− ρ)Υ t. More precisely, we need
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2ζη2 − c(1− ρ) + c(1− γ

n
) ≤ 0 (9)

1− µη + 2ζL̄2η2 − (1− ρ) +
cLL̄

n
≤ 0 (10)

To satisfy 9, we have:

2ζη2 + cρ− cγ

n
≤ 0

ρ ≤ γ

n
− 2ζη2

c

let c = 2αnζη2

γ for some α > 1, then ρ ≤ γ
n −

γ
αn .

Now, we replace the value for c in the 10, we get:

ρ− µη + 2ζL̄2η2 + 2α
ζ

γ
LL̄η2 ≤ 0

η ∈ (η− =
2µ−

√
µ2 − 8ρ(L̄+ αL) ζγ L̄

4(L̄+ αL) ζγL
2

, η+ =
2µ+

√
µ2 − 8ρ(L̄+ αL) ζγ L̄

4(L̄+ αL) ζγ L̄
)

To get the term under square root be positive, we need that ρ < µ2

8(L̄+αL) ζγ L̄
< µ2

8(1+α) ζγLL̄
holds. Finally if

we set ρ = min{ γµ2

8(1+α)ζLL̄
, γn −

γ
αn} and η = η+, then we have:

E
[
Υ t+1

]
≤ (1− ρ)t+1Υ 0

where Υ 0 is a scalar. Since Ψt > 0, then E [δt+1] ≤ E
[
Υ t+1

]
and we get:

E [δt+1] ≤ (1− ρ)t+1Υ 0
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