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Minimizing Finite Sum

We want to minimize the sum of a finite set of smooth functions

min
x∈Rd

f (x) :=
1
n

n∑

i=1

fi(x)

We are interested in cases where n is very large.
We will focus on strongly-convex functions
Simplest example is l2-regularized least-squares
fi(x) = (aT

i x − bi)
2 + λ

2‖x‖2
Common framework in data fitting problem

logistic regression, Huber regression, smooth SVMs, CRFs, etc.
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Stochastic vs. Deterministic Gradient Methods

Deterministic gradient method [Cauchy, 1847]:

Xt+1 = Xt − αt f ′(Xt) = Xt − αt
n

∑n
i=1 f ′i (Xt)

Linear convergence rate

Iteration cost is linear in n

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)

Stochastic gradient method [Robins and Monro, 1951]:

Randomly pick it in iteration t from {1, . . . ,n}
Xt+1 = Xt − αt f ′it (Xt)

Iteration cost is independent of n

Sub-linear convergence rate

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)
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Motivations for New Methods

Stochastic Variance Reduced Methods: Linear convergence rate
+ O(1) iteration cost
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Motivations for New Methods

SAG [Le Roux et.al 2012]
SDCA [Shalev-Shwartz and Zhang, 2013]
MISO [Marial, 2013]
SAGA [Defazio, et al.,2014]
These methods all need memory to store gradient of fi ’s or dual
variable

O(nd) space for general objective function.
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Stochastic Variance-Reduced Gradient (SVRG)

Recent methods with similar rates that avoid memory:
Mixed Gradient [Mahdavi & Jin, 2013, Zhang et al., 2013]
Stochastic variance-reduced gradient (SVRG) [Johnson & Zhang,
2013]
Semi-stochastic gradient [Konecny & Richtarik, 2013]

Memory is only O(d), but they require extra gradient calculations:
Two gradients on each iteration.
Occasional calculation of all n gradients.

Extra calculations make them slower than SAG and friends.
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Outline

1 Deterministic, stochastic, and finite-sum methods
2 Wasting fewer gradients in SVRG
3 Some Heuristic For SVM
4 Conclusion
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Stochastic Variance-Reduced Gradient

SVRG Algorithm( m, α,x0)

start with x0
for t = 0,1, . . . ,m

randomly pick it
x t+1 = x t − α(f ′it (x

t))
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Stochastic Variance-Reduced Gradient

SVRG Algorithm( m, α,x0)

start with x0

for t = 0,1, . . . ,m
randomly pick it
x t+1 = x t − α(f ′it (x

t)−f ′it (xs) + ds) (two gradients per iteration)
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Stochastic Variance-Reduced Gradient

SVRG Algorithm( m, α,x0)

start with x0

for s = 0,1,2, . . . (outer loop)
ds = 1

n
∑n

i=1 f ′i (xs) (full gradient evaluation)
x0 = xs
for t = 0,1, . . . ,m (inner loop)

randomly pick it
x t+1 = x t − α(f ′it (x

t)−f ′it (xs) + ds) (two gradients per iteration)

xs+1 = x t for a random t ∈ {1, . . . ,m}
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Convergence Analysis of SVRG

Assumptions:
Each fi is convex.
Each ∇fi is L-Lipschitz continuous.
f is µ-strongly convex.

Johnson & Zhang [2013] show that outer loop satisfies
E[f (xs+1)− f (x∗)] ≤ ρ[f (xs)− f (x∗)], ρ = 1

1−2αL(2Lα+ 1
mµα)

SVRG rate is very fast for appropriate step size α and inner-loop
size m.
In practice: m = n, α = 1/L, xs+1 = xm
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Convergence Analysis of SVRG with Error

Assume:
We approximate full gradient by ds = f ′(xs) + es

‖x t − x∗‖ ≤ Z for some Z

Then SVRG with error satisfies

E [f (xs+1)− f (x∗)] ≤ ρ[f (xs)− f (x∗)] +
αE
[
‖es‖2

]
+ ZE [‖es‖]

1− 2αL

Implications
faster rate when far from solution.
Same convergence rate if max{E [‖es‖] ,E

[
‖es‖2

]
} = O(ρ̃s) for

ρ̃s ≤ ρ
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Reducing Gradient Evaluations with Batching

SVRG requires 2m + n gradients for each m iterations.
We can reduce the n by using a mini-batch Bs of training examples

ds =
1
|Bs|

∑

i∈Bs

f ′i (xs)

Special case of SVRG with error, batch size controls error.

|Bs| ≥ nS2

S2 + nγρ̃2s

[Aravkin et al, 2012]

RBH (UBC) Practical SVRG WCOMOct, 2016 13 / 22



Batching SVRG Algorithm

Algorithm 1 Batching SVRG
Input: initial vector x0, update frequency m, learning rate α.
for s = 0, 1, 2, . . . do
Bs=|Bs| elements sampled without replacement from {1, 2, . . . , n}.
ds = 1

|Bs|
∑

i∈Bs f
′
i (x

s)

x0=xs
for t = 1, 2, . . . ,m do

Randomly pick it ∈ 1, . . . , n
x t+1 = x t − α(f ′it (x

t )− f ′it
(xs) + ds)

end for
option I: set xs+1 = xm

option II: set xs+1 = x t for a random t ∈ {1, . . . ,m}
end for

Growing-batch reduces n in the 2m + n cost of SVRG.
But does not improve the 2
Mixing SGD with SVRG
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Numerical Experiments with Batching

Training/testing loss for l∈-regularized logistic on spam filtering
data.

arg min
x∈Rd

λ

2
‖x‖2 + 1

n

n∑

i=1

log(1 + exp(−bia′ix))
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Identifying Support Vectors

Mixed strategy improves error when far from solution.
For certain objectives, can improve close to solution.
Consider Huberized hinge loss problem [Rosset & Zhu, 2006]

min
x∈Rd

1
n

n∑

i=1

f (bia′ix),

f (τ) =





0 ifτ > 1 + ε

1− τ ifτ < 1− ε
(1+ε−τ)2

4ε if|1− τ | ≤ ε

The solution is sparse in the f ′i (has support vectors).
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Using Support Vectors

Non-support examples do not contribute to solution
We can skip gradient evaluations where we expected/know that
f ′i = 0
Approach 1: sound pruning

Maintain list of support vectors at xs.
Do not evaluate fi(xs) if it is not a support vector.
Can reduce number of gradients per iteration to 1.
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Using Support Vectors

Non-support examples do not contribute to solution
We can skip gradient evaluations where we expected/know that
f ′i = 0
Approach 2: heuristic pruning

Keep track of the number of times we f ′i (xs) = 0 or f ′i (x
t) = 0.

If it continues to be zero, skip its next 2 evaluations.
If it continues to be zero, skip its next 4 evaluations.
If it continues to be zero, skip its next 8 evaluations.
Can reduce number of gradients per iteration to 1 exponentially.

RBH (UBC) Practical SVRG WCOMOct, 2016 19 / 22



Numerical Experiments with Support Vectors

L2-regularized Huberized hinge on spam filtering data.
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Conclusion

Stochastic methods for minimizing finite sum with linear
convergence
SVRG is the only method without a memory requirement
Reducing gradient evaluation by inexact full gradient
A heuristic SVM algorithm
Other variants and analysis

Mixed Strategy
Proximal SVRG
SVRG with non-uniform sampling
Fixed-Random Mini-Batching Strategy
Generalization error

Thank you!
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