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Minimizing Finite Sum

@ We want to minimize the sum of a finite set of smooth functions

min f(x Zf(x

xeRY

@ We are interested in cases where n is very large.
@ We will focus on strongly-convex functions

@ Simplest example is 12-regularized least-squares
fi(x) = (al x — bi)? + 31x|?
@ Common framework in data fitting problem
o logistic regression, Huber regression, smooth SVMs, CRFs, etc.

RBH (UBC) Practical SVRG WCOMOct, 2016 2/22



Stochastic vs. Deterministic Gradient Methods

@ Deterministic gradient method [Cauchy, 1847]:

0 Xip1 = Xp —arf'(Xp) = Xe — 2 Y11, (X))
e Linear convergence rate

@ lteration cost is linear in n

RBH (UBC) Practical SVRG WCOMOct, 2016 3/22



Stochastic vs. Deterministic Gradient Methods

@ Deterministic gradient method [Cauchy, 1847]:

0 Xip1 = Xp —arf'(Xp) = Xe — 2 Y11, (X))
e Linear convergence rate

o lteration cost is linear in n
@ Stochastic gradient method [Robins and Monro, 1951]:

e Randomly pick i in iteration t from {1,..., n}
Xeer = X; — aufl(Xe)

e lteration cost is independent of n

@ Sub-linear convergence rate
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Motivations for New Methods

@ Stochastic Variance Reduced Methods: Linear convergence rate
+ O(1) iteration cost
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Motivations for New Methods

@ SAG [Le Roux et.al 2012]
@ SDCA [Shalev-Shwartz and Zhang, 2013]
@ MISO [Marial, 2013]

@ SAGA [Defazio, et al.,2014]

@ These methods all need memory to store gradient of f’s or dual
variable

e O(nd) space for general objective function.
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Stochastic Variance-Reduced Gradient (SVRG)

@ Recent methods with similar rates that avoid memory:
@ Mixed Gradient [Mahdavi & Jin, 2013, Zhang et al., 2013]
e Stochastic variance-reduced gradient (SVRG) [Johnson & Zhang,
2013]
e Semi-stochastic gradient [Konecny & Richtarik, 2013]
@ Memory is only O(d), but they require extra gradient calculations:
e Two gradients on each iteration.
e Occasional calculation of all n gradients.

@ Extra calculations make them slower than SAG and friends.
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@ Deterministic, stochastic, and finite-sum methods
© Wasting fewer gradients in SVRG

© Some Heuristic For SVM

@ Conclusion
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Stochastic Variance-Reduced Gradient

SVRG Algorithm( m, «,xo)

@ start with xg
e fort=0,1,...,m

@ randomly pick i
X = xt — a(f(x"))
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Stochastic Variance-Reduced Gradient

SVRG Algorithm( m, «,xg)

@ start with xg
e fort=0,1,...,m

@ randomly pick i
X = x' — a(f](x")—f/(xs) + ds) (two gradients per iteration)

RBH (UBC) Practical SVRG WCOMOct, 2016 9/22



Stochastic Variance-Reduced Gradient

SVRG Algorithm( m, «,xo)

@ start with xg

@ fors=0,1,2,... (outerloop)
ds =137 f!(xs) (full gradient evaluation)
o XO == Xs
e fort=0,1,...,m (innerloop)

@ randomly pick i
X" = x"— af] (x")—f(xs) + ds) (two gradients per iteration)
@ X511 =x!forarandomte {1,...,m}
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Convergence Analysis of SVRG

@ Assumptions:

e Each f; is convex.
e Each Vf;is L-Lipschitz continuous.
o fis u-strongly convex.

@ Johnson & Zhang [2013] show that outer Ioop satisfies
E[f(xs11) — F(x*)] < plf(xs) = F(xX), p = 1= (CLla + 7:5)

@ SVRG rate is very fast for appropriate step size « and inner-loop
size m.

@ Inpractice: m=n, a =1/L, Xgy1 = x"
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Convergence Analysis of SVRG with Error

@ Assume:
e We approximate full gradient by d°® = f'(xs) + e°
o |[x! —x*|| < Z for some Z

@ Then SVRG with error satisfies

aF [||e°]|?] + ZE[||e°|]
1 —2al

E[f(xs+1) — F(x7)] < plf(xs) — F(X7)] +

@ Implications

o faster rate when far from solution.
e Same convergence rate if max{E [||e®[|] ,E [||€%|?]} = O(p°) for

pe<p
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Reducing Gradient Evaluations with Batching

@ SVRG requires 2m + n gradients for each m iterations.
@ We can reduce the n by using a mini-batch B° of training examples

1
ds = = Z f(xs)
ieBs
@ Special case of SVRG with error, batch size controls error.
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Batching SVRG Algorithm

Algorithm 1 Batching SVRG

Input: initial vector xo, update frequency m, learning rate .
fors=0,1,2,... do

B°=| B| elements sampled without replacement from {1,2, ..., n}.
s _ _1 /s
@ = 159 2iens i (%)
x0=xg
fort=1,2,...,mdo
Randomly pick i € 1,...,n
K =Xt — ot (x) — 1 (x6) + &)
end for
option I: set xg, 1 = x™
option Il: set xs, 1 = x! forarandomt € {1,...,m}
end for

@ Growing-batch reduces nin the 2m + n cost of SVRG.
@ But does not improve the 2
@ Mixing SGD with SVRG
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Numerical Experiments with Batching

@ Training/testing loss for Je-regularized logistic on spam filtering
data.

N
arg min z |[x][* + ~ ; log(1 + exp(—b;aix))
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@ Deterministic, stochastic, and finite-sum methods
@ Wasting fewer gradients in SVRG

© Some Heuristic For SVM

@ Conclusion
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Identifying Support Vectors

@ Mixed strategy improves error when far from solution.
@ For certain objectives, can improve close to solution.
@ Consider Huberized hinge loss problem [Rosset & Zhu, 2006]

min — f(bjaix),
xeRd N Z ( 08 Linear
0 ifr >1+¢ g
fr)=<{1-r ifr <1—e
Ot g — 7 < e oz
4e — ’
0

0 0.5 1 15 2

@ The solution is sparse in the f/ (has support vectors).
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Using Support Vectors

@ Non-support examples do not contribute to solution

@ We can skip gradient evaluations where we expected/know that
fl=0

@ Approach 1: sound pruning

e Maintain list of support vectors at xs.
o Do not evaluate fi(xs) if it is not a support vector.
e Can reduce number of gradients per iteration to 1.
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Using Support Vectors

@ Non-support examples do not contribute to solution

@ We can skip gradient evaluations where we expected/know that
fi=0
@ Approach 2: heuristic pruning
e Keep track of the number of times we f/(xs) = 0 or f/(x") = 0.
e If it continues to be zero, skip its next 2 evaluations.
e If it continues to be zero, skip its next 4 evaluations.
e If it continues to be zero, skip its next 8 evaluations.
e Can reduce number of gradients per iteration to 1 exponentially.
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Numerical Experiments with Support Vectors

@ L2-regularized Huberized hinge on spam filtering data.
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10 T T T
0 5 10 15
Ef fective Passes

RBH (UBC) Practical SVRG WCOMOct, 2016 20/22



@ Deterministic, stochastic, and finite-sum methods
@ Wasting fewer gradients in SVRG

© Some Heuristic For SVM

@ Conclusion
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Conclusion

@ Stochastic methods for minimizing finite sum with linear
convergence

@ SVRG is the only method without a memory requirement

@ Reducing gradient evaluation by inexact full gradient

@ A heuristic SVM algorithm

@ Other variants and analysis

o Mixed Strategy

e Proximal SVRG

e SVRG with non-uniform sampling

e Fixed-Random Mini-Batching Strategy
o Generalization error

@ Thank you!
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